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Abstract

A magnetic transition operator on a crystal lattice is defined as a generalization of the Harper
operator. Following the idea of J. Bellissard, we prove Lipschitz continuity of the band edges of its
spectrum as magnetic field changes.
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1. Introduction

The Harper operator was designed to describe the behavior of an electron moving on the
square lattice exposed to the constant magnetic field by Harper[6]. While the spectrum of the
magnetic Laplacian ofR2 under the uniform magnetic field is very simple and completely
understood as the Landau levels, the spectrum of the Harper operator is difficult to analyze.
The spectrum is a band when the magnetic flux is a rational number and is a Cantor set
when the magnetic flux class is a Liouville number. Thus it has caught people’s interest and
much work has been done (cf.[3,5,7]and references therein).

As a generalization of the classical Harper operator on the square lattice, the notion of
magnetic transition operatorson more general graphs, namely crystal lattices, was intro-
duced by Sunada[11]. The purpose of the present paper is to study the spectrum of the
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Fig. 1. The square latticeZ2.

magnetic transition operators on crystal lattices, especially how the spectrum depends on
the associated magnetic field by using theC∗-algebra approach following Bellissard[2,3].

To state our main result, let us recall the definition ofmagnetic transition operators.
A crystal latticeX is an infinite graph on which an abelian groupΓ acts freely with a
finite graphX0 as its quotient, or equivalently, it is the abelian covering graph of a finite
graphX0 with the covering transformation groupΓ . Intuitively, it is an infinite graph with a
fundamental pattern consisting of finite vertices and finite edges, which appears periodically.
The square latticeZd , the triangular lattice, the hexagonal lattice are typical examples (see
Figs. 1–3). For simplicity, we assumeΓ has no torsion, thereforeΓ ∼= Zd for somed.

Recall that a magnetic Laplacian ofRd under a periodic magnetic fieldB with respect to
a latticeΓ is defined by a vector potentialA, which is aweaklyΓ -invariant 1-form of Rd

satisfying dA = B. (Here we considerB as a closed 2-form onRd .) A discrete analogue
of a vector potential for a crystal latticeX is, therefore, a weaklyΓ -invariant 1-formω on

Fig. 2. The triangular lattice.
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Fig. 3. The hexagonal lattice.

X (defined inSection 2). It defines aΓ -invariant cohomology class [ω] ∈ H1(X,R)Γ . The
covering mapπ : X → X0 induces the surjective mapΘ : H1(X,R)Γ → H2(Γ,R), where
H2(Γ,R) is the 2nd group cohomology ofΓ . We callΘ[ω] themagnetic flux classof [ω].
For Γ = Zd , it is known thatH2(Γ,R) ∼= Rd(d−1)/2 and we identifyH2(Γ,R) with the
space of the skew symmetric bilinear formB = ∑

bij dxi ∧ dxj of Γ ⊗ R ∼= Rd , therefore
it is a discrete analogue of the space of the magnetic flux classes of periodic magnetic fields
on the Euclidean space.

For a weakΓ -invariant 1-formω, themagnetic transition operatorHω onX is defined
by

(Hωϕ)(x) =
∑
e∈Ex

p(e)e−√−1ω(e)ϕ(t(e)).

(SeeSection 2for the definitions of the notations.) If two weakΓ -invariant 1-formsω1 and
ω2 represent the same element inH1(X,R)Γ (and so have the same magnetic flux class in
H2(Γ,R)),Hω1 andHω2 are unitarily equivalent. Therefore, when spectrum is concerned,
we say the magnetic transition operatorH[ω] corresponding to the magnetic flux class
B = Θ[ω]. We shall see thatHω is an element of the reduced twisted groupC∗-algebraAB
associated withB = Θ[ω] ∈ H2(Γ,R) in Section 3.

An advantage of theC∗-algebra approach is that one can treat not only the magnetic
transition operators but also a wider class of the operators which depends smoothly on the
magnetic flux class. LetΩ be a small neighborhood ofB0 inH2(Γ,R) andAΩ = ∪B∈ΩAB.
Given a smooth structure onAΩ, we define the spaceCl,n(AΩ) of a (l, n)-differentiable
elementsH in AΩ in Section 4.

Theorem 1.1. LetH ∈ C1,d/2+2+ε(AΩ) be a self-adjoint operator. Denote the upper/lower
edges of a gapg of the spectrum ofH byEg±, respectively. AtB0 ∈ Ω where the gap width
Wg is positive, Eg± are Lipschitz continuous functions inB. Namely we have

|Eg±(B2)− E
g
±(B1)| ≤ c(H)

[
sup

B∈U(B0)

Wg(B)

]−(d/2+4)

|B2 − B1|,

for B1, B2 ∈ U(B0), whereU(B0) is a small neighborhood ofB0 in Ω in whichWg is
positive.
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Remark 1.2. For arbitraryΓ ∼= Zd , there are examples of crystal lattices such that the
spectra of the magnetic transition operators on them with small magnetic flux classes have
gaps. SeeSection 7.

Remark 1.3. When the magnetic flux class belongs toH2(Γ,Q), it is shown that the
spectrum of the magnetic transition operator has a band structure in[8,11]. The Lipschitz
constant of‖Hω‖ at the zero magnetic flux class is estimated in[8]. More precisely, forHω
with the non-degenerate magnetic fluxB = Θ[ω],

lim sup
δ→0

1

δ2
(1 − ‖Hδ2ω‖) ≤ 1

m(X0)

∑
|bi|,

where±√−1bi are the eigenvalues ofB.

Remark 1.4. The spectrum of the discrete magnetic Laplacian onZ3-lattices (theZ3-cover
of the 3-bouquet graph) is studied carefully by Bédos[1].

2. Magnetic transition operators

A magnetic field onRd is a closed 2-formB = ∑
bij dxi ∧ dxj and a vector poten-

tial A for B is a 1-form satisfying dA = B. The magnetic Laplacian is the self-adjoint
operator∆A = ∇∗

A∇A, where∇A = d − √−1A is the connection of the trivial line
bundle onRd and∇∗

A is its adjoint. The magnetic Laplacian associated with two differ-
ent vector potentials for the same magnetic fieldB belong to the same unitary equiva-
lence class of the operators. A magnetic fieldB is periodic with respect to a lattice group
Γ ⊂ Rd if and only if γ∗A − A = dfγ (γ ∈ Γ). We call this property forA weak
Γ -invariant.

In this section, we define the magnetic transition operator on a crystal lattice, as a discrete
analogue of the magnetic Laplacian onRd . In the classical Harper model case, the square
lattice lies in the Euclidean spaceR2 exposed to the perpendicular magnetic field (which
is identified with a 2-form onR2). In our case, we consider the crystal latticeX as an
abstract infinite graph. It is not in a Euclidean space a priori. Therefore, an account of
what is the magnetic field/flux class corresponding to our magnetic transition operator is
needed.

Let X be a crystal lattice, the covering graph of a finite graphX0 with the covering
transformation groupΓ ∼= Zd . Denote the space of all oriented edges ofX byE, the origin
and the terminus of an oriented edgee by o(e), t(e), the inverse edge ofe by ē, respectively,
and putEx = {e ∈ E|o(e) = x} for x ∈ X. Here and throughout the paper, we identify the
space of vertices ofXwithX (so a vertexx is denoted asx ∈ X). Give aΓ -invariantweight
m : X → R+ of the vertices ofX and aΓ -invariant transition probabilityp of a symmetric
random walk onX, i.e.p : E → R+ s.t.∑

e∈Ex
p(e) = 1, x ∈ X, m(o(e))p(e) = m(t(e))p(ē), e ∈ E.
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A simple random walk, i.e.p(e) = deg(o(e))−1,m(x) = deg(x) is an example of symmetric
random walks onX.

As a discrete analogue of vector potentials, we take aweaklyΓ -invariant 1-formω on
X, i.e. a functionω : E → R of E satisfying

ω(ē) = −ω(e), γ∗ω − ω = dsγ (∀γ ∈ Γ, ∃sγ : X → R).

There is no straightforward discrete analogue of a magnetic field onX, because a magnetic
field on the Euclidean space is a closed 2-form whileX is a one-dimensional object. A weak
Γ -invariant 1-form defines an element ofH1(X,R)Γ , We take aΓ -invariant cohomology
class [ω] ∈ H1(X,R)Γ as a substitute for a magnetic field.

For an element [ω] ∈ H1(X,R)Γ , we define itsmagnetic flux classas an element of the
2nd group cohomologyH2(Γ,R). A 2-cocycleB is a mapB : Γ × Γ → R satisfying the
cocycle condition:

B(σ1, σ2σ3)+ B(σ2, σ3) = B(σ1, σ2)+ B(σ1σ2, σ3) (σ1, σ2, σ3 ∈ Γ), (1)

and the 2nd cohomology class is the equivalence class defined by the relation;

B1 ∼ B2 ⇔ B2(α, β) = B1(α, β)+ s(β)+ s(α)− s(αβ) (α, β ∈ Γ, ∃s : Γ → R).

From(1), we deduce

B(1, σ) = B(σ,1) = B(1,1),

and hence we always normalizeB so thatB(1, σ) = B(σ,1) = 0.
For a given weakΓ -invariantω (γ∗ω − ω = dsγ ), put

B(α, β) = sα(x)− sα+β(x)+ sβ(α
−1x) (x ∈ X,α, β ∈ Γ). (2)

It does not depend onx ∈ X and satisfies the cocycle condition. Moreover, the cohomology
class does not depend on the choice ofsα, sβ, andω (but on [ω]). Thus it defines a map
Θ : H1(X,R)Γ → H2(Γ,R). Actually there is an exact sequence;

0 → H1(Γ,R)
ι→H1(X0,R)

π∗
→H1(X,R)Γ

Θ→H2(Γ,R) → 0.

WhenX is the universal abelian coveringXab
0 ofX0 (whose covering transformation group

is H1(X0)), Θ : H1(X,R)Γ → H2(Γ,R) is isomorphism. A general abelian coverX of
X0 is a sub-cover ofXab

0 andΘ is surjective.
ForΓ ∼= Zd , it is known thatH2(Γ,R) ∼= Rd(d−1)/2 and we identifyH2(Γ,R) with the

space of the skew symmetric bilinear formB = (bij ) of Γ ⊗ R ∼= Rd , therefore with the
space of the magnetic flux classes of periodic magnetic fields onΓ ⊗ R, and for later use,
we also identify the space with that of the constant magnetic fields onΓ ⊗R. We callΘ[ω]
themagnetic flux classof [ω].

Let

-2(X) :=

ϕ : X → C

∣∣∣∣∣‖ϕ‖2 =
∑
x∈X

m(x)|ϕ(x)
∣∣∣∣∣
2

< ∞

 .
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The magnetic transition operatorHω : -2(X) → -2(X) on X is defined for a weak
Γ -invariant 1-formω in [11] by

(Hωϕ)(x) =
∑
e∈Ex

p(e)e−√−1ω(e)ϕ(t(e)).

Note thatH0 is the transition operator of the symmetric random walk onX. Just like the
Euclidean case, two weakΓ -invariantω1,ω2 yield unitarily equivalent magnetic transition
operators and so it makes sense to say that the magnetic flux classB = Θ([ω]) ∈ H2(Γ,R)

corresponds toHω.
We find, for an arbitrary elementB ∈ H2(Γ,R), a canonical magnetic transition operator

HB onX whose corresponding magnetic flux class isB as follows. An arbitrary crystal
lattice is realized inΓ ⊗ R ∼= Rd by the energy minimizingΓ -equivariant mapΦ : X →
Γ ⊗ R and is called thestandard realization[9]. It gives the most symmetric realization
of the given crystal lattice. For example, the standard realization of theZ2-lattice is the
square lattice, that of the triangular lattice is the equilateral triangular lattice, and that of
the hexagonal lattice is the equilateral hexagonal lattice. The flat metric associated with the
standard realization is called theAlbanese metric. We identifyB with the skew symmetric
matrixB = (bij ) byB(α, β) = 〈Bα, β〉, where〈·, ·〉 is the inner-product onΓ ⊗ R defined
by the Albanese metric. Consider the constant magnetic fieldB = ∑

i,j bij dxi ∧ dxj of
Γ ⊗ R and take a linear vector potentialA = ∑

aijxj dxi with aji − aij = 2bij , aij ∈ R

associated withB. Puta = (aij ). Then

ωA(e) :=
∫
e

Φ∗A = 〈aΦ(o(e)),dΦ(e)〉 + 1

2
〈adΦ(e),dΦ(e)〉

is a weakΓ -invariant 1-form ofX with sγ(x) = −〈aγ,Φ(x)〉 and its magnetic flux class is
equal toB. Therefore we haveHωA whose corresponding magnetic flux class is the given
B. We denote it byHB hereafter.

On the other hand, when a weakΓ -invariant 1-formω satisfies a certain condition (which
should be considered to be the condition forω to be a “linear vector potential” ofX), there is
the unique linear vector potentialA of Γ ⊗ R such that theω is “essentially” the pull-back
ωA of A through the standard realization. In this case, we have a convergence theorem
(CLT) of semigroupsHn

ω/n → e−t∆A [8], where∆A is the magnetic Laplacian with respect
to the Albanese metric. Thus it is reasonable to callHB the canonical magnetic transition
operator forB ∈ H2(Γ,R).

Example 2.1 (the classical Harper operator). The square lattice is theZ2-cover of the
2-bouquet graph and is realized inR2 as the integer lattice. Denote the realization by
Φ : Z2 → R2. Consider the vector potentialA = (1/2)(−bydx + bxdy) on R2 (b is
a constant) whose corresponding constant magnetic field isB = b dx ∧ dy. The induced
1-form ωA = ∫

Φ∗A is a weakΓ -invariant 1-form onZ2, sinceγ∗ω − ω = dsγ with
sγ(x) = (1/2)B(Φ(x), γ) andΘ([ω]) = (1/2)B. Give the transition probability for the
simple random walk, i.e.p(e) = 1/4 for everye ∈ E. The magnetic transition operatorHω
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coincides with the classical Harper operator onZ2:

(Hωϕ)(m, n) = 1
4

[
e
√−1bn/2ϕ(m+ 1, n)+ e−√−1bn/2ϕ(m− 1, n)

+ e−√−1bm/2ϕ(m, n+ 1)+ e
√−1bm/2ϕ(m, n− 1)

]
,

for (m, n) ∈ Z2.

3. Group C∗ algebras

In theC∗-approach by Bellissard in[2,3], it is important to understand the Harper operator
as an element of the non-commutative torus, theC∗-algebra consisting of the right magnetic
translations which commutes with the left magnetic translations. Our magnetic transition
operators are regarded as elements of a twistedC∗-algebraA(Γ, B,W) in the following way.

For a weakΓ -invariantω, we takesγ(γ ∈ Γ) satisfyingγ∗ω − ω = dsγ . The magnetic
flux classB ∈ H2(Γ,R) is given as(2).

LetW be a finite dimensional Hilbert space and-2(Γ,W) be the space of-2 functions of
Γ with W-valued. Theleft magnetic translationon-2(Γ,W) is defined by

(Mαφ)(γ) = e−√−1B(α,α−1γ)φ(α−1γ) (α, γ ∈ Γ, φ ∈ -2(Γ,W)),

and theright magnetic translationon-2(Γ,W) by

(Uαφ)(γ) = e
√−1B(γ,α)φ(γα) (α, γ ∈ Γ, φ ∈ -2(Γ,W)).

It is straightforward to check

MαMβ = e−√−1B(α,β)Mαβ, UαUβ = e
√−1B(α,β)Uαβ, MαUβ = UβMα.

Putθ(·, ·) = e
√−1B(·,·) and

C(Γ,B,W) =
{
A =

∑
aαUα finite sum|aα ∈ End(W)

}
.

ThenC(Γ,B,W) has the∗-algebra structure by(∑
aαUα

) (∑
bβUβ

)
=

∑
θ(α, β)aαbβUαβ,

∗
(∑

aαUα

)
=

∑
a∗
α−1θ(α, α

−1)−1Uα.

The completion ofC(Γ,B,W) in B(-2(Γ,W)) with respect to the operator norm is denoted
by A(Γ, B,W) and is called thereduced twisted groupC∗-algebra. As Γ is an abelian
group, it is isomorphic to the full twisted groupC∗-algebra.

We shall relateHω with an element inC(Γ,B,W) ⊂ A(Γ, B,W) with B = Θ[ω] and a
suitableW . More generally, consider a self-adjoint operatorL : -2(X) → -2(X) formally
given, using the kernel functionh(·, ·), by

(Lϕ)(x) =
∑
y∈X

h(x, y)ϕ(y)
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which commutes with all magnetic translationsM̃α. Here by the magnetic translation, we
mean

M̃α : ϕ(·) ∈ -2(X) �→ e−√−1sα(x)ϕ(α−1x) ∈ -2(X) (ϕ ∈ -2(X), α,∈ Γ, x ∈ X).

Then the condition that [L, M̃α] = 0 is equivalent to the condition

h(x, y) = e−√−1sα(x)h(α−1x, α−1y)e
√−1sα(y). (3)

We call this propertyweakΓ -invariance. The kernel functionh of Hω is given by

h(x, y) =
{
p(e)e−√−1ω(e), x = o(e), y = t(e)with ∃e ∈ E,
0, otherwise,

and is weakΓ -invariant.
Take a fundamental domainF of X for theΓ -action and putW = -2(F) ∼= C(X0), the

(#X0)-dimensional vector space overC. We shall see that a weakΓ -invariant operatorL
on-2(X) is regarded as an element of the von Neumann algebra:

W(Γ, B,W) = {A ∈ B(-2(Γ,W))|[A,Mα] = 0,∀α ∈ Γ }.

We identify-2(X) with -2(Γ,W) by the correspondence:

ϕ ∈ -2(X) ↔ φ ∈ -2(Γ,W),

ϕ(x) = e−√−1sα(x)φ(α)(x0) (∀x = αx0, ∃!α ∈ Γ, ∃!x0 ∈ F).

Through this identification, the correspondent operatorL̂ : -2(Γ,W) → -2(Γ,W) to L :
-2(X) → -2(X) is given by

(L̂φ)(α)(x0) =
∑
γ∈Γ

θ(α, γ)
∑
y0∈X0

e−√−1sγ (x0)h(γ−1x0, y0)φ(αγ)(y0).

As M̃α corresponds toMα under this identification,̂L belongs toW(Γ, B,W) if and only if
L is weaklyΓ -invariant.

By putting

(aγψ)(x0) =
∑
y0∈X0

e−√−1sγ (x0)h(γ−1x0, y0)ψ(y0),

formally we haveL̂ = ∑
γ∈Γ aγUγ .

In the case of the magnetic transition operatorHω, aγ != 0 if and only if there exitse ∈ E
with o(e) = x0 ∈ F and t(e) = γy0, ∃x0, ∃y0 ∈ F . For eachx0 ∈ F , #Ex0 < ∞, and,
for eache ∈ Ex0, there is a uniqueγ satisfyingt(e) = γy0. Thus there are only finiteaγ
which do not vanish. ThusHω corresponds to an element ofC(Γ,B,W) ⊂ A(Γ, B,W)with
W = C(X0). From now on we identifyHω with the corresponding element inA(Γ, B,W).
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4. Smooth structure of the field of C∗-algebra

We put the Albanese metric onΓ ⊗ R and identifyH2(Γ,R) with the space of skew
symmetric bilinear formsB = (bij )with respect to this flat metric. We always take the skew
symmetric bilinear form as a representative of an element ofH2(Γ,R), unless we mention
otherwise.

For a given skew symmetric bilinear formB ∈ H2(Γ,R), as wee see inSection 2, there
is the canonical weakΓ -invariant 1-formω with Θ[ω] = B, and the magnetic transition
operatorHB = Hω. We ask how Spec(HB) depends onB whenB changes smoothly. Since
eachHω belongs to a distinctA(Γ, B,W), we do not look at an individualA(Γ, B,W) but
a field ofC∗-algebrasA(Γ, B,W)’s. In this way, we treat not onlyHω but also a large class
of smooth elements in Bellissard’s formulation[2].

Take a small open subsetΩ ⊂ H2(Γ,R) ∼= Rd(d−1)/2. Put

PkΩ =
{
A =

∑
aαU

Ω
α finite sum|aα ∈ Ck(Ω,End(W))

}
,

whereUΩα ’s are formal unitary elements andW = C(X0). PkΩ is equipped with∗-algebra

structure with the functionθ : B ∈ Ω �→ θ(·, ·) = e
√−1B(·,·):

UΩα U
Ω
β = θ(α, β)UΩαβ, aαU

Ω
β = UΩβ aβ, (UΩα )

∗ = (UΩα )
−1 = UΩ

α−1.

We also consider similarly

P{B} =
{
A =

∑
aαU

B
α finite sum|aα ∈ End(W)

}
,

and its completionAB with respect to theC∗-norm

‖A‖B := sup
π∈Rep

‖π(A)‖,

where the supremum is taken over all unitary equivalence classes of representations ofP{B}
on separable Hilbert spaces. Every representation ofP{B} or every∗-automorphism ofP{B}
extends uniquely toAB.

TheC∗-algebraA(Γ, B,W) we have defined in the previous section is nothing but the
right regular representation ofAB and isomorphic toAB, sinceΓ is abelian. Therefore our
Hω can be regarded as an element ofAB withB = Θ[ω]. Moreover,B ∈ Ω → HB belongs
toP∞

Ω .
Define the evaluation homomorphism

:B : PkΩ → PB (4)

in the obvious way. The universalC∗-algebraAΩ is defined as the completion ofPkΩ with
respect to the norm

‖A‖Ω = sup
B∈Ω

‖:B(A)‖B.

The evaluation map extends to a∗-homomorphism:B : AΩ → AB. The canonical trace
τ : AΩ → C(Ω) is given byτ(A)(B) = (dimW)−1 trW a0(B) ∈ C. It is shown thatAΩ is
a continuous field ofC∗-algebra in[4].
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The fieldAΩ has the following smooth structure. We define a family of∗-automorphism
ηζ of AΩ parameterized withζ ∈ T d = Γ ⊗ R/Γ by

ηζ(Uα) = e−2π
√−1〈ζ,α〉Uα. (5)

For an elementA ∈ P∞
Ω , we define

∂iA =
∑
α∈Γ

√−1αiaαUα (i = 1, . . . , d), δijA =
∑
α∈Γ

∂aα

∂bij
Uα (1 ≤ i < j ≤ d).

The∂i is a∗-derivation andδij satisfies

δij (∗A) = ∗δij (A), δij (AB) = (δijA)B + A(δijB)− √−1(∂iA∂jB − ∂jA∂iB).

Thus we define the order of∂i to be one and the order ofδij to be two. For example,
differential operatorδs∂r is of order 2|s| + |r| for multi-indexs andr. The space

Cl,n(AΩ) = {A ∈ AΩ|‖δs∂r(A)‖ < ∞,0 ≤ |s| ≤ l,0 ≤ 2|s| + |r| ≤ n}
is dense inAΩ. It is shown in[2] that theCl,n(AΩ) has the norm‖ · ‖l,n which makes
Cl,n(AΩ) a Banach∗-algebra.

We also define the Sobolev spaceHl,n as the completion ofP∞
Ω with respect to the norm

‖A‖Hl,n := sup
B∈Ω

sup{τ(|δs∆rA|2)1/2|0 ≤ |s| ≤ l,0 ≤ 2|s| + 2|r| ≤ n}

= 1√
dimW

sup
B∈Ω

sup{|α|2r(trW |δsaα|2)1/2|0≤|s|≤ l,0 ≤ 2|s| + 2|r| ≤ n},

where∆ = ∑
∂2
i . Note that‖ · ‖Hl,n ≤ C‖ · ‖l,n. We extend the norms‖ · ‖Hl,n for real

numbern ≥ 2l > 0, l ∈ N ∪ {0}.

5. Weyl representation

LetW = C(X0) andΓ ⊗ R ∼= Rd be the Euclidean space equipped with the Albanese
metric throughout this section.

A representation ofAB onL2(Γ ⊗ R,W) is given byUBα �→ Ũα : L2(Γ ⊗ R,W) →
L2(Γ ⊗ R,W), a unitary operator:

(Ũαϕ)(x) = e
√−1B(x,α)ϕ(x+ α) (ϕ ∈ L2(Γ ⊗ R,W)),

where we identifyα ∈ Γ with the vectorα ⊗ 1 ∈ Γ ⊗ R. These are the right magnetic
translations onL2(Γ ⊗ R,W).

This representation has a direct integral decomposition by the right regular representations
A(Γ, B,W) ⊂ B(-2(Γ,W)) of AB. To be more precise, forϕ ∈ L2(Γ ⊗ R,W) andζ ∈
Γ ⊗ R/Γ , we defineιζ(ϕ) = Ψζ by

Ψζ : γ ∈ Γ �→ e
√−1B(ζ,γ)ϕ(ζ + γ) ∈ W,
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and associate a familyΨ = {Ψζ}ζ∈Γ⊗R/Γ of -2
ξ (Γ,W)parameterized byζ ∈ T d = Γ⊗R/Γ .

Then it is easy to check

‖Ψ‖2 :=
∫
T d

‖Ψζ‖2
-2
ζ (Γ,W)

dζ =
∫
T d

∑
γ∈Γ

∥∥∥e
√−1B(ζ,γ)ϕ(ζ + γ)

∥∥∥2
dζ

=
∫
T d

∑
γ∈Γ

‖ϕ(ζ + γ)‖2 dζ =
∫
Γ⊗R

|ϕ(x)|2 dx = ‖ϕ‖2
L2(Γ⊗R,W).

ThusL2(Γ ⊗ R,W) = ∫ ⊕
T d
-2
ζ (Γ,W)dζ.

Let us see the induced operator of-2
ζ (Γ,W)

∼= -2(Γ,W) coincides with the right magnetic

translationUα : -2(Γ,W) → -2(Γ,W). Actually, we have

(ιζ(Ũαϕ))(γ)=(ιζ(e
√−1B(·,α)ϕ(· + α))(γ)= e

√−1B(ζ,γ) e
√−1B(ζ+γ,α)ϕ(ζ+γ+α).

On the other hand, we get

Uα(ιζ(ϕ))(γ) = e
√−1B(γ,α)ιζ(ϕ)(γ + α) = e

√−1B(γ,α) e
√−1B(ζ,γ+α)ϕ(ζ + γ + α).

ThusιζŨα = Uαιζ.
Therefore the representation ofAB onL2(Γ ⊗ R,W) and that on-2(Γ,W) are the same

and

Spec(A : L2(Γ ⊗ R,W)) = ∪
ζ∈T d

Spec(A : -2
ζ (Γ,W)) = Spec(A : -2(Γ,W)).

Instead ofŨα, we simply writeUα : L2(Γ ⊗ R) → L2(Γ ⊗ R) and extend the right
magnetic translationUα to Uv onL2(Γ ⊗ R) for v ∈ Γ ⊗ R and express it as an integral
operator in the following way.

LetV be the orthogonal complement of the null space ofB and its dimension dim(V) =
2k. We writex = x′ + x′′ ∈ V ⊕V⊥. Denote a slightly modified right translation onL2(V)

(Uvϕ)(x) = e
√−1B(x,v)ϕ(x+ v′) (x ∈ V ⊂ Γ ⊗ R, v ∈ Γ ⊗ R)

by the same symbol. Note thatB(x, v) = B(x, v′) asv− v′ belongs to the null space ofB.
It still satisfies the relationUvUw = θ(v,w)Uv+w and acts onL2(V,W) ⊂ L2(Γ ⊗ R,W).

For a while, we work onL2(V,W). So, instead of writingx′, etc. we usex, etc. SincetBBis
a positive definite symmetric matrix onV , it defines the inner-product〈x, y〉B = 〈x, |B|y〉0

and the volume form dBx = B ∧ · · · ∧B of V . Putϕ0(x) = π−k/2 e−12|x|2B(‖ϕ‖B = 1) and
L2

0(V,W) = Span{Uv′ϕ0}v∈Γ⊗R ⊂ L2(V,W) ⊂ L2(Γ ⊗ R,W).
DefineP : L2(V,W) → L2(V,W) by

(Pϕ)(x) = π−k/2
∫
V

ϕ(y)U−yϕ0(x)dBy.

By definition, the imageP(L2(V,W)) is contained inL2
0(V,W).
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Lemma 5.1.

Pϕ(x) = π−k/2〈〈ϕ,U−xϕ0〉〉B = π−k/2〈〈Uxϕ, ϕ0〉〉B, PUv = UvP, Pϕ0 = ϕ0.

Proof. First we observe thatU−yϕ0(x) = U−xϕ0(y) and therefore

Pϕ(x) = π−k/2
∫
V

ϕ(y)U−xϕ0(y)dBy = π−k/2〈〈ϕ,U−xϕ0〉〉B.

Next by using

〈〈Uvϕ,ψ〉〉B = 〈〈ϕ,U−vψ〉〉B,
we have

Pϕ(x) = π−k/2〈〈Uxϕ, ϕ0〉〉B,
and also

(PUvϕ)(x) = π−k/2〈〈Uvϕ,U−xϕ0〉〉B = π−k/2〈〈ϕ,U−vU−xϕ0〉〉B
= π−k/2〈〈ϕ, θ(v, x)U−(v+x)ϕ0〉〉B = π−k/2θ(x, v)〈〈ϕ,U−(x+v)ϕ0〉〉B
= π−k/2θ(x, v)〈〈Ux+vϕ, ϕ0〉〉B = (UvPϕ)(x).

We can checkPϕ0 = ϕ0 by direct calculation. �

Lemma 5.2. P is the orthogonal projection ontoL2
0(V,W).

Proof. From the above lemma, forϕ ∈ L2
0(V,W)

⊥ ⊂ L2(V,W), Pϕ = 0 and for every
elementsϕ = Uvϕ0, we see thatPϕ = PUvϕ0 = Uvϕ0 = ϕ. �

The kernel function ofP is p(x, y) = π−k/2U−yϕ0(x) = p(y, x).
We define theWeyl representation, a projective representation ofΓ ⊗ R, πw(Uv) =

PUv′ : L2
0(V,W) → L2

0(V,W) for v ∈ Γ ⊗ R, i.e.

(πw(Uv)ϕ)(x) = e
√−1B(x,v)ϕ(x+ v′).

It can be written as

(πw(Uv)ϕ)(x) = π−k/2〈〈Uv′ϕ,U−xϕ0〉〉B = π−k/2〈〈ϕ,U−v′U−xϕ0〉〉B
= π−k/2

〈〈
ϕ,e

√−1B(v′,x)U−x−v′ϕ0

〉〉
B

= π−k/2 e
√−1B(x,v)

∫
V

e
√−1B(y,x+v)ϕ0(y − x− v′)ϕ(y)dBy.

By the symplectic Fourier transform formula, we have the expression

πw(Uv) = (4π)−k
∫
V

e
√−1B(v,ξ) e(1/2)|v

′|2BTξ dBξ, (6)
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whereTξ : L2
0(V,W) → L2

0(V,W) is the integral operator with the kernel function

tξ(x, y) = π−k e(1/2)
√−1B(ξ,y−x) e−(1/4)|y−x|2B e−(1/4)|y+x+ξ|2B .

Tξ is hermitian becausetξ(x, y) = tξ(y, x). Putting ϕξ = Uξ/2ϕ0, we seeTξϕ =
〈〈ϕ, ϕξ〉〉Bϕξ, i.e. a one-dimensional projection. Puttingv = 0 in (6),

(4π)−k
∫
V

Tξ dBξ = IdL2
0(V,W)

. (7)

By easy computation, we have

Lemma 5.3.

tr(TξTζ) =
∫∫

tξ(x, y)tζ(y, x)dBx dBy = e−(1/4)|ξ−ζ|2,

tr(Tξ) = π−k
∫

e−|2x+ξ|2B/4 dBx = 1.

We see in particular thatΩη : A �→ tr(TηA) is a state ofB(L2
0(V,W)).

6. Spectral gap

Now we want to compare the spectrum ofHB0 andHB1 whenB0 andB1 are close. For that
letΩ be a small neighborhood ofB0 and writeB′ = B0 + hB ∈ Ω with a smallh ∈ R. Let
V be the orthogonal complement of the null space ofB in Γ ⊗R andx = x′ +x′′ ∈ V⊗V⊥.
Put rankΓ = d and dimV = 2k. Consider the representationπh ofAhB onL2

0(V,W) given
by

(πh(U
B
α )ϕ)(x) =

(
πw

(
UB√

hα

)
ϕ
)
(x) = e

√−1B(x,
√
hα)ϕ(x+

√
hα′) (α ∈ Γ),

where, in the last two terms, we identifyα ∈ Γ with the vectorα⊗1 ∈ Γ ⊗R and consider√
hα,

√
hα′ as vectors inΓ ⊗ R. It is easy to check

πh(U
B
α )πh(U

B
β ) = e

√−1hB(α,β)πh(U
B
αβ) (α, β ∈ Γ).

We identify AB′ with the subalgebraA′ generated by{UB0
α ⊗ πh(U

B
α )}α∈Γ of AB ⊗

B(L2
0(V,W)) by the correspondenceUB

′
α ↔ U

B0
α ⊗ πh(U

B
α ).

Proposition 6.1. The∗-homomorphismι fromAB′ to A′ defined byι : UB
′

α → U
B0
α ⊗

πh(U
B
α ) is an isomorphism.

Proof. It is enough to show thatι is injective. Recall that the∗-automorphismηζ : AB0 →
AB0 is given by

ηζ(U
B0
α ) = e−2π

√−1〈ζ,α〉UB0
α ,
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whereζ ∈ Γ ⊗ R/Γ . By using it, we also define the∗-automorphism

η̃ζ = ηζ ⊗ 1 :AB0 ⊗ B(L2
0(V,W) → AB0 ⊗ B(L2

0(V,W)).

By definition,

η̃ζ(U
B0
α ⊗ πh(U

B
α )) = e−2π

√−1〈ζ,α〉UB0
α ⊗ πh(U

B
α ),

and thusηζ ◦ ι = ι ◦ η̃ζ, with ηζ : AB′ → AB′ .
First, we show thatι is injective when it is restricted inPB′ . Actually, for a finite sum

A = ∑
aαU

B′
α with ι(A) = 0, we have

0 = ηζ(ι(A)) = ι(η̃(A)) =
∑

aα e−2π
√−1〈ζ,α〉UB0

α ⊗ πh(U
B
α ).

By computing∫
T d

e2π
√−1〈ζ,γ〉ι(η̃ζ(A))dζ = aγU

B0
α ⊗ πh(U

B
α ),

we getaγ = 0 for arbitraryγ ∈ Γ . That isA = 0 inPB′ .
For a generalA ∈ AB′ with ι(A) = 0, we use an approximation argument. Take a series

{fn ∈ C(T d)} of trigonometric polynomials, i.e.

fn =
∑

|γ|≤Nn
cn,γ e2π

√−1〈γ,ζ〉 (cn,γ = const.),

such that

1. fn ≥ 0,

2.
1

vol(T d)

∫
T d
fn = 1,

3. for δ > 0,

lim
n→∞

∫
|ζ|≥δ

fn = 0.

A series of such{fn} is given by the Fejer polynomials (see[2]). LetA ∈ AB′ such that
ι(A) = 0 and put

An = ηfn(A) :=
∫
T d
fn(ζ)ηζ(A)dζ =

∑
α

∑
|γ|≤Nn

cn,γaα

∫
T d

e2π
√−1〈γ−α,ζ〉UB

′
α

=
∑

|γ|≤Nn
cn,γaγU

B′
γ ∈ PB′ .

Sinceι ◦ ηζ = η̃ζ ◦ ι, we obtain

ι(An) = ι(ηfn(A)) = η̃fn ι(A) =
∫
fn(ζ)η̃ζ(ι(A)) = 0.

As ι is injective onPB′ , we conclude thatAn = 0.
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On the other hand,

‖A− An‖ =
∥∥∥∥
∫
T d
fn(ζ)(A− ηζ(A))

∥∥∥∥ ≤
∫
T d
fn(ζ)‖A− ηζ(A)‖

≤
∫

|ζ|<δ
fn(ζ)‖A− ηζ(A)‖ + 2‖A‖

∫
|ζ|≥δ

fn(ξ) → 0,

asn → ∞. Therefore

‖A‖ ≤ lim
n

‖An − A‖ + ‖An‖ = 0,

i.e.A = 0. Thus we have provedι is injective onAB′ . �

LetA ∈ Hl,n(AΩ) with l ≥ 0 andn > d/2 + 2 such that∫
Γ⊗R/Γ

e2π
√−1〈ζ,α〉ηζ(A)dζ = aα.

ThusA is formally written asA = ∑
aαU

Ω
α . We write :B′(A) = A(B′), where:B′ :

AΩ → AB′ is the evaluation map(4). It can be written as

Lemma 6.2.

A(B′) = (4πh)−k
∫
V

A(h, ξ)⊗ T
ξ/

√
h

dBξ, (8)

where

A(h, ξ) =
∑

aα(B
′)e

√−1B(α,ξ) e(h/2)|α
′|2BUB0

α ∈ AB0.

Proof. Let

A(B′) =
∑

aα(B
′)UB0

α ⊗ πh(U
B
α ) ∈ AB0 ⊗ B(L2

0(V,W)).

By using the expression(6), we have

A(B′) = (4π)−k
∫
V

∑
aα(B

′)UB0
α ⊗ e

√−1B(
√
hα,ξ) e(1/2)|

√
hα′|2BTξ dBξ

= (4π)−k
∫
V

∑
aα(B

′)e
√−1B(α,

√
hξ) e(h/2)|α

′|2BUB0
α ⊗ Tξ dBξ

= (4πh)−k
∫
V

∑
aα(B

′)e
√−1B(α,ξ) e(h/2)|α

′|2BUB0
α ⊗ T

ξ/
√
h

dBξ

= (4πh)−k
∫
V

A(h, ξ)⊗ T
ξ/

√
h

dBξ. �

By putting the∗-automorphismηBξ : AB0 → AB0 defined byηξ(U
B0
α ) = e

√−1B(α,ξ)U
B0
α ,

we seeA(h, ξ) = ηBξ (A(h,0)) and therefore Spec(A(h, ξ)) = Spec(A(h,0)) does not
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depend onξ. PutE(B′) = ‖A(B′)‖, E(B0) = ‖A(B0)‖, andE(h, ξ) = ‖A(h, ξ)‖ =
E(h,0).

Lemma 6.3. LetA ∈ Hl,n(AΩ) for l ≥ 0 andn > d/2, formally written asA = ∑
aαU

Ω
α ,

and letAN = ∑
|α|<N aαUα. For 0 ≤ ν ≤ n− d/2,

‖A− AN‖ ≤ CN−ν‖A‖Hl,n .

Proof. Noting thatUα’s are unitaries, i.e.‖Uα‖ = 1, we obtain

‖A− AN‖ =
∥∥∥∥∥∥

∑
|α|≥N

aαUα

∥∥∥∥∥∥ ≤
∑

|α|≥N
|aα|‖Uα‖ =

∑
|α|≥N

|aα|.

By Hölder inequality, we have

∑
|α|≥N

|aα| ≤

 ∑

|α|≥N
|α|−4r




1/2 
 ∑

|α|≥N
|α|4r|aα|2




1/2

.

If 4r − d = 2ν > 0, we have

∑
|α|≥N

|α|−4r ≤
∫
x∈Rd ,|x|≥N

|x|−4r dx = Cν−1N−2ν.

On the other hand, asn ≥ 2r = ν + d/2 andl ≥ 0,

∑
|α|≥N

|α|4r|aα|2 ≤ C‖A‖2
Hl,n

.

Thus we have shown

‖A− AN‖ ≤ CN−ν‖A‖Hl,n ,

for 0 ≤ ν ≤ n− d/2. �

Lemma 6.4. LetA ∈ Hl,n(AΩ) with l ≥ 1 andn > d/2 + 2 and0 < ν ≤ n − 2 − d/2
andAN = ∑

|α|<N aαUΩα , AN(B0) = :B−(AN). Then we have

‖AN(h,0)− AN(B0)‖ ≤ Ch‖B‖N−ν e(h‖B‖/2)N2‖A‖Hl,n ,

where‖B‖2 = trWBB∗ = ∑
ij b

2
ij .
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Proof. SinceUB0
α ’s are unitary, we have

‖AN(h,0)− AN(B0)‖
≤

∑
|α|<N

‖[aα(B
′)e(h/2)|α

′|2B − aα(B0)]U
B0
α ‖

≤
∑

|α|<N

∫ 1

0

∣∣∣∣∣
∑

bij
δaα

δbij
(B0 + sB)+ |α′|2B

2
aα(B0 + sB)

∣∣∣∣∣ e(h/2)|α
′|2B ds

≤ h‖B‖e(h‖B‖/2)N2
sup
Ω


 ∑

|α|<N
|δaα| + |α|2|aα|


 . (9)

The first term of the R.H.S. of(9) is estimated as inLemma 6.3. Namely, forl ≥ 1 and
n ≥ 2 + 2r with 4r − d = 2ν,∑

|α|<N
|δaα| ≤ CN−ν‖A‖Hl,n .

In our case, 2+ 2r = 2 + ν + d/2< n is fulfilled.
Now for the second term of the R.H.S. of(9), from the Hölder inequality, it follows that

∑
|α|<N

|α|2|aα| ≤

 ∑

|α|<N
(|α|2 + 1)−2(r−1)




1/2 
 ∑

|α|<N
(|α|2 + 1)2r|aα|2




1/2

.

We also get∑
|α|<N

(|α|2 + 1)−2(r−1) ≤
∫
x∈Rd ,|x|≤N

(1 + |x|2)−2(r−1) ≤ CN−2ν,

with 2ν = 4(r − 1)− d > 0. One the other hand, forl ≥ 0 andn ≥ 2r,∑
|α|<N

(|α|2 + 1)2r|aα|2 ≤ C‖A‖2
Hl,n

.

Again, in our case, we have 2r = ν + 2 + d/2 ≤ n. Thus we have the assertion. �

From(7), it follows that

E(B′) ≤ E(h, ξ)‖(4πh)−k
∫
V

T
ξ/

√
h

dBξ‖ = E(h, ξ). (10)

Now we takeN = O((h‖B‖)−1/2). Then fromLemmas 6.3 and 6.4and(10), we have

E(B′) ≤ EN(B
′)+ h‖B‖‖A‖Hl,n ≤ EN(h,0)+ h‖B‖‖A‖Hl,n

≤ E(B0)+ h‖B‖‖A‖Hl,n . (11)

Lemma 6.5. For l ≤ 1 andn > 2 + d/2,

E(B′) ≥ E(B0)− h‖A‖Hl,n .
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Proof. For an arbitrary smallε > 0. there is a stateωε of AB0 such thatωε(A(h,0)) ≥
E(h)− ε. We also define the stateΩζ(A) = tr(T

ζ/
√
h
A) of B(L2

0(V,W)).

(ωε ⊗Ωη)(A(B
′))

= (4πh)−k
∫
ωε(A(h, ξ))tr(Tη/

√
h
T
ξ/

√
h
)dBξ

= (4πh)−k
∫
ωε(A(h, ξ))e−|η−ξ|2B/4h dBξ

= (4πh)−k
∑

aα(B
′)e(h/2)|α|

2
Bωε(U

B0
α )

∫
e
√−1B(α,ξ)e−|η−ξ|2B/4h dBξ

=
∑

aα(B
′)e−(h/2)|α′|2Be

√−1B(α,ζ)ωε(U
B0
α ).

By the same argument inLemma 6.4, we have the assertion. �

Put(11)andLemma 6.5together, we obtain the following theorem.

Theorem 6.6. LetA be a self-adjoint element inH1,d/2+2+ε (ε > 0) andE(B) = ‖A(B)‖
for B ∈ Ω. Then there is a positive constantC(ε) such that

|E(B1)− E(B2)| ≤ C(ε)‖A‖H1,d/2+2+ε‖B1 − B2‖,
where‖B‖2 = trW(BB∗).

7. Final remark

One would wonder if there is actually a spectral gap for the Harper operator on a crystal
lattice. There are some examples of crystal lattices which have gaps, at least for small
magnetic flux. Because the band edges are continuous in magnetic flux, it is enough to find
a crystal lattice whose transition operator (i.e. the magnetic fluxB = 0 case) has gaps.
Those examples are provided by Shirai[10] in the following way.

LetX be a regular graph of degreeq. We construct a new regular graphLX fromX. The
vertices ofLX are the unoriented edges ofX and two verticese1 ande2 of LX are adjacent
whene1 ande2 are incidental as the edges ofX. Thus the setE(LX) of all oriented edges
of LX are given by

{(e1, e2)|e1, e2 ∈ E, e2 != ē1, t(e1) = o(e2)},
and the origino(e1, e2) = e1 and the terminust(e1, e2) = e2.

TheLX is called theline graphof X (seeFig. 4). It is easy to see thatLX is a regular
graph of degree 2(q − 1) and thatLX is theΓ -covering graph ofLX0 whenX is the
Γ -covering graph ofX0, so the line graphLX of a crystal latticeX is again a crystal lattice.
Shirai computed the spectrum Spec(∆L(X)) of the Laplacian∆L(X) of LX to find

Spec(∆L(X)) = q

2(q− 1)
Spec(∆(X)) ∪

{
q

q− 1

}
,

whereq/(q− 1) is the eigenvalue of infinite multiplicity.
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Fig. 4. The square lattice and its line graph.

Define the crystal latticeLnX inductively byLnX = L(Ln−1X). It is the regular graph
of degree 2n(q− 2)+ 2 and has

Spec(∆Ln(X)) = q

2n(q− 2)+ 2
Spec(∆X) ∪

n−1⋃
k=0

{
2(2k(q− 2)+ 2)

2n(q− 2)+ 2

}
.

Note that Spec(∆X) ⊂ [0,2] and that the right most edge ofq/(2n(q − 2)+ 2)Spec(∆X)
coincides with the smallest eigenvalue 2q/(2n(q − 2) + 2), when the right most edge of
Spec(∆X) is equal to 2. There are gaps between two eigenvalues next to each other. The
transition operatorL has gaps asL = I −∆.
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